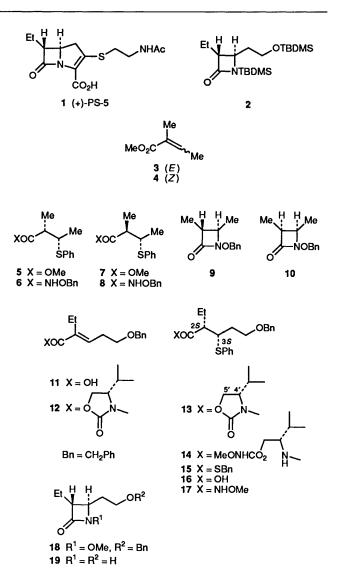

A Novel Stereoselective Route to β -Lactams: Diastereoselective Synthesis of a Key Intermediate for Carbapenem Antibiotic (+)-PS-5

Okiko Miyata, Yoko Fujiwara, Ichiya Ninomiya and Takeaki Naito* Kobe Women's College of Pharmacy, Motoyamakita, Higashinada, Kobe 658, Japan


A combination of stereoselective addition of thiophenol to olefins and subsequent substitution of the corresponding sulfonium group with an O-alkylhydroxamate anion has provided a new practical and stereoselective method for the construction of β -lactams which has been successfully applied to the formal asymmetric synthesis of the carbapenem antibiotic (+)-PS-51.

In the synthesis of carbapenem antibiotics, the control of the relative and absolute stereochemistries of the contiguous chiral centres and the construction of the β -lactam ring¹ remain difficult synthetic tasks. In particular, a stereoselective and practical method for the construction of *cis*- β -lactams has not been exploited compared with many known¹ synthetic works on the *trans*-lactams. We now provide a potential method for stereoselective syntheses of both *cis*- and *trans*- β -lactams by the newly developed stereospecific nucleophilic addition of thiols to olefins $(\mathbf{A} \longrightarrow \mathbf{B})^2$ and stereoselective displacement reaction of the corresponding sulfonium group with an *O*-alkylhydroxamate anion $(\mathbf{B} \longrightarrow \mathbf{C} \longrightarrow \mathbf{D})$. The usefulness of this method is demonstrated by the asymmetric synthesis of a key intermediate 2 for the carbapenem antibiotic (+)-PS-5 1 in 42% total yield from the acid 11.

Methyl (E)-2-methylbut-2-enoate 3 was treated with 10 equiv. of thiophenol in the presence of 0.1 equiv. of lithium thiophenoxide to give the erythro-adduct 5^2 in 95% yield. Treatment of the erythro-5 with benzyloxyamine hydrochloride and trimethylaluminium³ afforded the O-benzyl hydroxamate 6 in 81% yield. S-Alkylation of the sulfide 6 with methyl iodide in the presence of silver perchlorate⁴ followed by treatment of the resulting sulfonium salt with potassium carbonate underwent smooth lactamization by intramolecular substitution to give the trans-lactam 9 with high stereoselectivity (trans: cis = 90:10) in 60% yield. In a similar manner, the Zester 4 was transformed into the cis-\beta-lactam 10 via the threoadduct 7 and the hydroxamate 8 with high stereoselectivity (cis: trans = 92:8). The stereostructures of 9 and 10 were confirmed by their ¹H NMR spectral characteristics; ⁵ 9: $J_{3,4}$ 2 Hz; 10: J_{3.4} 6 Hz.

The synthetic utility of this method is shown by a

stereoselective synthesis of the known⁶ key intermediate 2 for the synthesis of (+)-PS-51. The chiral imide 12, prepared from the *E*-carboxylic acid 11[†] and (-)-4-isopropyloxazolidin-2-one (Evans's reagent) was treated with 10 equiv. of thiophenol in the presence of 5 equiv. of lithium thiophenoxide in THF at -78 °C. The desired (2*S*,3*S*)-adduct 13 was obtained in 78% yield and the stereostructure was deduced by the chemical conversion described later into the final β -lactam 2. Attempted transamination^{3,8} of 13 by treatment with methoxyamine hydrochloride and trimethylaluminium into the hydroxamate 17 was unsuccessful and instead gave the undesired amide 14 in

[†] Compound 11 was prepared by the conventional method involving Wittig-Horner reaction, olefin isomerisation, ⁷ and hydrolysis.

84% yield, as a result of the attack of methoxyamine on the oxazolidinone carbonyl group. Recently, we have found that aluminium thiobenzyloxy 'ate' complex is an excellent reagent for the cleavage of N-acylcamphorsultam.4ª Therefore, the method was successfully applied to 13 to give the thio ester 15 in 93% yield. Hydrolysis of the thio ester 15 in the presence of silver trifluoroacetate proceeded smoothly to give the corresponding acid 16 in 96% yield, which was then treated with methoxyamine hydrochloride and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride to give the desired hydroxamate 17 in 86% yield. Formation of the azetidinone 18 was accomplished in 83% yield through S-alkylation of 17 and subsequent treatment of potassium carbonate. Cleavage of both N-O and O-CH₂Ph bonds of **18** by the conventional method⁹ (Na-liq. NH₃, -78 °C) was unsuccessful. However, when calcium¹⁰ is used in place of sodium, the reductive cleavage reaction proceeded smoothly to give the desired product 19 in 96% yield. Finally, treatment of 19 with tert-butyldimethylsilyl trifluoromethanesulfonate (TBDMS-OTf) in the presence of 2,6lutidine (2,6-dimethylpyridine) afforded the disilylated β-lactam **2**, $[\alpha]_{\rm D} - 34.2$ (c 0.79, CHCl₃) {lit.,¹¹ $[\alpha]_{\rm D} - 37.73$ (c 2.25, CHCl₃),^{11a} - 30.1 (c 2.9, CHCl₃)^{11b}} in 42% overall yield from the carboxylic acid 11 in a nine-step sequence. Since β -lactam 2 had previously been transformed into (+)-PS-5 1,⁶ the present method provides a new highly efficient asymmetric synthesis of (+)-PS-51.

Experimental

Addition of Thiophenol to the Chiral Imide 12.—Thiophenol (1 cm³, 10.8 mmol) was added at 0 °C to a stirred solution of butyllithium (10% solution in hexane; 2.3 cm³, 3.6 mmol) in tetrahydrofuran (THF) (5 cm³) to give a solution of a 2:1 mixture of thiophenol and lithium thiophenoxide. To this solution was added a solution of imide 12 (250 mg, 0.72 mmol) in THF (5 cm³) at -78 °C. After being stirred at -78 °C for 5 h, the mixture was made alkaline by the addition of 5% aqueous NaOH and extracted with CH₂Cl₂. The extract was dried and concentrated to give a residue which was purified by mediumpressure column chromatography [Lobar größe B column (310-25, Lichroprep Si 60, Merck), hexane-AcOEt 3:1] to give compound 13 as a colourless oil (257 mg, 78%); $[\alpha]_D - 2.5^*$ (c 2.77, CHCl₃); v_{max} (CHCl₃)/cm⁻¹ 1778 and 1692; δ (500 MHz; CDCl₃)† 7.39 ~ 7.21 (10 H, m, 2 × Ph), 4.49 (1 H, m, 4'-H), 4.48 and 4.45 (2 H, ABq, J12, OCH₂Ph), 4.24 (1 H, t, J9, 5'-H), 4.18 (2 H, m, 3- and 5'-H), 3.79 (1 H, dt, J 10, 5.5, 5-H), 3.70 (1 H, ddd, J 10, 7, 5, 5-H), 3.61 (1 H, ddd, J 10, 6, 4, 2-H), 2.27 (1 H, m, CHMe₂), 2.13 (1 H, m, 4-H), 1.95 ~ 1.78 (3 H, m, 4-H and CH₂Me), 0.89 (3 H, d, J 7, CHMe), 0.87 (3 H, t, J 7, CH₂Me) and 0.80 (3 H, d, J7, CHMe) (Found: M⁺, 455.2110. C₂₆H₃₃NO₄S requires *M*, 455.2128).

Intramolecular Cyclisation of the Hydroxamate 17.-Methyl iodide (2 cm³, 31 mmol) was added at room temperature to a stirred solution of hydroxamate 17 (116 mg, 0.3 mmol) and silver perchlorate (280 mg, 1.4 mmol) in MeCN (4 cm³). After being stirred at room temperature for 15 h, the mixture was filtered to remove the resulting silver iodide. The filtrate was concentrated to give the sulfonium salt. To a stirred suspension of K_2CO_3 (360 mg, 2.6 mmol) in refluxing acetone (12 cm³) was added a solution of the sulfonium salt in acetone (7 cm^3) and the mixture was refluxed for 2h. After addition of water, the mixture was extracted with CH₂Cl₂. The extract was dried and concentrated to give a residue which was purified by mediumpressure column chromatography [Lobar größe B column (310-25, Lichroprep Si 60, Merck), CH₂Cl₂-AcOEt, 10:1] to give azetidinone 18 as a colourless oil (66 mg, 83%); $[\alpha]_{\rm D} - 1.3$ $(c 2.27, CHCl_3); v_{max}(CHCl_3)/cm^{-1}$ 1760; $\delta(500 \text{ MHz}; CDCl_3)$ 7.40-7.26 (5 H, m, Ph), 4.50 (2 H, s, PhCH₂), 3.75 (3 H, s, OMe), 3.71 (1 H, ddd, J7.5, 6, 2, 4-H), 3.60 (2 H, m, OCH₂), 2.57 (1 H, ddd, J 8, 6, 2, 3-H), 2.14 (1 H, dq, J 14, 6, OCH₂CH), 1.91 (1 H, dtd, J 14, 7.5, 6, OCH₂CH), 1.80–1.58 (2 H, m, CH₂Me) and 1.00 (3 H, t, J 7.5, CH₂Me) (Found: M⁺, 263.1549. $C_{15}H_{21}NO_3$ requires *M*, 263.1521).

References

- C. Palomo, Recent Progress in the Chemical Synthesis of Antibiotics, eds. G. Lukacs and M. Ohno, Springer-Verlag, Berlin, 1990, p. 565.
- 2 (a) O. Miyata, T. Shinada, T. Naito and I. Ninomiya, *Chem. Pharm.* Bull., 1989, **37**, 3158; (b) O. Miyata, T. Shinada, I. Ninomiya, T. Naito, T. Date, K. Okamura and S. Inagaki, J. Org. Chem., 1991, **56**, 6556.
- 3 J. I. Levin, E. Turos and S. M. Weinreb, Synth. Commun., 1982, 12, 989.
- 4 (a) O. Miyata, T. Shinada, N. Kawakami, K. Taji, I. Ninomiya, T. Naito, T. Date and K. Okamura, *Chem. Pharm. Bull.*, 1992, 40, 2579; (b) H. Matsuyama, T. Nakamura and N. Kamigata, *J. Org. Chem.*, 1989, 54, 5218.
- 5 D. E. Davis and R. C. Storr, *Comprehensive Heterocyclic Chemistry*, eds. A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 7, p. 237.
- 6 D. Favara, A. Omodei-Sale, P. Consonni and A. Depaoli, Tetrahedron Lett., 1982, 23, 3150.
- 7 O. Miyata, T. Shinada, I. Ninomiya and T. Naito, *Synthesis*, 1990, 1123.
- 8 D. A. Evans and E. B. Sjogren, Tetrahedron Lett., 1986, 27, 3119.
- 9 D. M. Floyd, A. W. Fritz, J. Pluscec, E. R. Weaver and C. M. Cimarusti, *J. Org. Chem.*, 1982, **47**, 5160.
- 10 T. Naito, N. Kojima, O. Miyata and I. Ninomiya, J. Chem. Soc., Perkin Trans. 1, 1990, 1271.
- 11 (a) M. Shibasaki, Y. Ishida, G. Iwasaki and T. Iimori, J. Org. Chem., 1987, 52, 3489; (b) C. Gennari and P. G. Cozzi, J. Org. Chem., 1988, 53, 4015.

Paper 3/05894H Received 30th September 1993 Accepted 13th October 1993

^{*} $[\alpha]_D$ Values are given in units of 10^{-1} deg cm² g⁻¹.

[†] J Values are given in Hz.